Artificial Intelligence and Machine Learning Fundamentals

Artificial Intelligence and Machine Learning Fundamentals teaches you machine learning and neural networks from the ground up using real-world examples. After you complete this course, you will be excited to revamp your current projects or build new intelligent networks.

Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Pythonand discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples.

 

As you make your way through the course, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law.

 

By the end of this course, you will be confident when it comes to building your own AI applications with your newly acquired skills!

035439
3 days

After completing this course, you will be able to:

  • Understand the importance, principles, and fields of AI
  • Implement basic Artificial Intelligence concepts with Python
  • Apply regression and classification concepts to real-world problems
  • Perform predictive analysis using decision trees and random forests
  • Carry out clustering using the k-means and mean shift algorithms
  • Understand the fundamentals of deep learning via practical examples
This course takes a hands-on approach to implement different AI techniques and algorithms using Python. This course does not delve into the basics of Python. It is recommended to have knowledge of basic Python programming and high-school mathematics.
This course is for you if you Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
-
  • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Ubuntu
  • Linux, or the latest version of macOS
  • Browser: Google Chrome (latest version)
  • Anaconda (latest version)
  • IPython (latest version)

For the optimal student experience, we recommend the following hardware configuration:

  • Processor: Intel Core i5 or equivalent
  • Memory: 8 GB RAM
  • Storage: 35 GB available space
  • An internet connection
-

Lesson 1: Principles of Artificial Intelligence

Fields and Applications of Artifcial Intelligence

AI Tools and Learning Models

The Role of Python in Artifcial Intelligence

Python for Game AI

Lesson 2: AI with Search Techniques and Games

Heuristics

Pathfnding with the A* Algorithm

Game AI with the Minmax Algorithm and Alpha-Beta Pruning

Lesson 3: Regression

Linear Regression with One Variable

Linear Regression with Multiple Variables

Polynomial and Support Vector Regression

Lesson 4: Classification

The Fundamentals of Classifcation

Classifcation with Support Vector Machines

Lesson 5: Using Trees for Predictive Analysis

Introduction to Decision Trees

Random Forest Classifer

Lesson 6: Clustering

Introduction to Clustering

The k-means Algorithm

Mean Shift Algorithm

Lesson 7: Deep Learning with Neural Networks

TensorFlow for Python

Introduction to Neural Networks

Deep Learning

$216.00 USD

Buy Now